Navegando por Autor "Alessi, Odenis"
Agora exibindo 1 - 3 de 3
- Resultados por página
- Opções de Ordenação
Item Análise Comparativa do Nível de Acurácia de Modelos Híbridos Utilizados para Predizer o Tempo de Vida de Baterias(2018-07-13) Alessi, OdenisO desenvolvimento tecnológico permite que diferentes dispositivos eletrônicos sejam capazes de executar cada vez mais um número maior de tarefas. Dentre estes dispositivos estão os dispositivos móveis, que pela utilização de uma bateria, agregam mobilidade e comodidade na execução de diferentes serviços, otimizando o tempo do usuário. Desta forma, o funcionamento do dispositivo está ligado diretamente ao tempo de vida da bateria, nesse contexto é importante o estudo acerca do desempenho e do comportamento da bateria frente a diferentes cenários de descarga. A predição do tempo de vida de baterias pode ser realizada através da modelagem matemática, que permite realizar a simulação de um processo de descarga real através de modelos matemáticos. Estes modelos são classificados em categorias: os modelos eletroquímicos, os modelos elétricos, os modelos analíticos, os modelos estocásticos, os modelos via teoria de identificação de sistemas e os modelos híbridos. Este trabalho é realizado utilizando a categoria de modelos híbridos. Estes modelos são constituídos através da união de pelo menos dois modelos pertencentes a categorias diferentes, conseguindo agregar as vantagens dos modelos utilizados nesta união. Neste sentido, o objetivo deste trabalho é realizar a modelagem matemática do tempo de vida de baterias utilizando os modelos híbridos encontrados na literatura técnica, realizando uma análise comparativa entre o nível de acurácia dos mesmos. São usados perfis de descarga constantes e os dados experimentais são obtidos de uma plataforma de testes, considerando baterias de Lítio Íon Polímero. Nos dados experimentais é realizado um tratamento estatístico, a fim de identificar a presença de valores outliers e médias experimentais diferentes estatisiticamente. As simulações computacionais são realizadas no software MatLab e as validações dos modelos híbridos ocorre através da comparação dos resultados das simulações com os dados obtidos da plataforma de testes. Após as validações, constatou-se que todos os modelos híbridos utilizados neste trabalho são acurados, apresentando erro médio inferior a 5%, independente da presença de valores outliers. Por fim, comparando os valores dos erros, é concluído que o modelo híbrido proposto por Zhang é o modelo mais acurado, seguido pelo modelo híbrido de Kim e de Gomes. Também foi possível observar que os menores erros foram encontrados na presença de valores outliers.Item Modelagem do progresso de doenças foliares e produtividade em cultivares de aveia à redução no uso de fungicida(2023-12-20) Alessi, OdenisA aveia branca (Avena sativa L.) é um cereal de grande importância agrícola. Durante o seu cultivo está sujeita ao ataque de doenças foliares, com destaque à ferrugem da folha e à helmintosporiose. A forma mais eficaz no controle destas doenças ocorre com a utilização de fungicidas. Entretanto, a concentração de aplicação do fungicida ocorre em estágios como a floração e enchimento de grãos, possibilitando à permanência de resíduos dos agrotóxicos nos grãos. Além disto, o uso indiscriminado do agente químico pode trazer graves prejuízos ao meio ambiente. No Brasil há uma grande quantidade de cultivares de aveia recomendadas para cultivo e a utilização de cultivares com maior resistência às doenças foliares e com maior eficiência em condições adversas de cultivo pode proporcionar a redução do uso de agrotóxicos. Desta forma, a modelagem matemática e computacional pode auxiliar na identificação de cultivares com maior resistência às doenças foliares e pode permitir a simulação do progresso destas doenças e da produtividade de grãos, auxiliando na redução do uso de fungicida, promovendo maior segurança alimentar. O objetivo do estudo é empregar a modelagem matemática e computacional na identificação de cultivares de aveia com maior resistência às doenças foliares e realizar a simulação do progresso das doenças foliares e produtividade de grãos de aveia, na identificação do manejo do fungicida que promova maior segurança alimentar. O experimento foi realizado nos anos de 2015 a 2020 no IRDeR, pertencente à UNIJUÍ. O delineamento experimental foi o de blocos casualizados, seguindo um esquema fatorial 22 x 5, para as 22 cultivares de aveia branca recomentada para o cultivo no Brasil e 5 condições de aplicações de fungicida, com três repetições. As condições de aplicação do fungicida foram: sem aplicação de fungicida; uma aplicação aos 60 dias após a emergência (DAE); duas aplicações (uma aos 60 e outra aos 75 DAE); três aplicações (uma aos 60, outra aos 75 e outra aos 90 DAE) e; quatro aplicações (uma aos 60, outra aos 75, outra aos 90 e outra aos 105 DAE). Na condição sem uso de fungicida as cultivares Corona, Brisasul, Afrodite, Farroupilha e Gaudéria apresentam as menores taxas de evolução de necrose foliar, com destaque à cultivar Farroupilha que possui características de adaptabilidade ampla e de estabilidade sobre a área foliar necrosada. A cultivar Altiva apresenta maior expressão da produtividade de grãos na ausência de fungicida e menor dependência ao uso do agrotóxico. A produtividade de grãos mostra relação negativa com a área foliar necrosada e positiva com a massa do hectolitro e a produtividade industrial. Destaca-se que na ausência e nas condições de presença de fungicida se evidenciam relações de causa e efeito semelhantes entre as variáveis. A área foliar necrosada apresenta grande número de correlações significativas negativas com variáveis ligadas a produtividade e qualidade de grãos, principalmente a massa de mil grãos e do hectolitro e produtividade de grãos e de indústria. A condição de duas aplicações de fungicida, uma aos 60 DAE e outra aos 75 DAE, reduz a expressão da necrose foliar e permite a obtenção de produtividade de grãos satisfatória, com elevado intervalo entre a colheita e a última aplicação do agrotóxico. O modelo de simulação da área foliar necrosada via redes neurais artificiais é mais eficiente no processo de simulação em relação ao modelo de regressão linear múltipla A técnica de otimização por algoritmo genético identifica que a avaliação da área foliar necrosada aos 87 dias após a emergência permite a melhor análise da área foliar necrosada com melhor estimativa da produtividade de grãos de aveia. Palavras-chave: Avena sativa L., matemática aplicada, inteligência artificial, redução de agrotóxicos, sustentabilidade.Item Modelagem do progresso de doenças foliares e produtividade em cultivares de aveia à redução no uso de fungicida(2024-10-25) Alessi, OdenisA aveia branca (Avena sativa L.) é um cereal de grande importância agrícola. Durante o seu cultivo está sujeita ao ataque de doenças foliares, com destaque à ferrugem da folha e à helmintosporiose. A forma mais eficaz no controle destas doenças ocorre com a utilização de fungicidas. Entretanto, a concentração de aplicação do fungicida ocorre em estágios como a floração e enchimento de grãos, possibilitando à permanência de resíduos dos agrotóxicos nos grãos. Além disto, o uso indiscriminado do agente químico pode trazer graves prejuízos ao meio ambiente. No Brasil há uma grande quantidade de cultivares de aveia recomendadas para cultivo e a utilização de cultivares com maior resistência às doenças foliares e com maior eficiência em condições adversas de cultivo pode proporcionar a redução do uso de agrotóxicos. Desta forma, a modelagem matemática e computacional pode auxiliar na identificação de cultivares com maior resistência às doenças foliares e pode permitir a simulação do progresso destas doenças e da produtividade de grãos, auxiliando na redução do uso de fungicida, promovendo maior segurança alimentar. O objetivo do estudo é empregar a modelagem matemática e computacional na identificação de cultivares de aveia com maior resistência às doenças foliares e realizar a simulação do progresso das doenças foliares e produtividade de grãos de aveia, na identificação do manejo do fungicida que promova maior segurança alimentar. O experimento foi realizado nos anos de 2015 a 2020 no IRDeR, pertencente à UNIJUÍ. O delineamento experimental foi o de blocos casualizados, seguindo um esquema fatorial 22 x 5, para as 22 cultivares de aveia branca recomentada para o cultivo no Brasil e 5 condições de aplicações de fungicida, com três repetições. As condições de aplicação do fungicida foram: sem aplicação de fungicida; uma aplicação aos 60 dias após a emergência (DAE); duas aplicações (uma aos 60 e outra aos 75 DAE); três aplicações (uma aos 60, outra aos 75 e outra aos 90 DAE) e; quatro aplicações (uma aos 60, outra aos 75, outra aos 90 e outra aos 105 DAE). Na condição sem uso de fungicida as cultivares Corona, Brisasul, Afrodite, Farroupilha e Gaudéria apresentam as menores taxas de evolução de necrose foliar, com destaque à cultivar Farroupilha que possui características de adaptabilidade ampla e de estabilidade sobre a área foliar necrosada. A cultivar Altiva apresenta maior expressão da produtividade de grãos na ausência de fungicida e menor dependência ao uso do agrotóxico. A produtividade de grãos mostra relação negativa com a área foliar necrosada e positiva com a massa do hectolitro e a produtividade industrial. Destaca-se que na ausência e nas condições de presença de fungicida se evidenciam relações de causa e efeito semelhantes entre as variáveis. A área foliar necrosada apresenta grande número de correlações significativas negativas com variáveis ligadas a produtividade e qualidade de grãos, principalmente a massa de mil grãos e do hectolitro e produtividade de grãos e de indústria. A condição de duas aplicações de fungicida, uma aos 60 DAE e outra aos 75 DAE, reduz a expressão da necrose foliar e permite a obtenção de produtividade de grãos satisfatória, com elevado intervalo entre a colheita e a última aplicação do agrotóxico. O modelo de simulação da área foliar necrosada via redes neurais artificiais é mais eficiente no processo de simulação em relação ao modelo de regressão linear múltipla A técnica de otimização por algoritmo genético identifica que a avaliação da área foliar necrosada aos 87 dias após a emergência permite a melhor análise da área foliar necrosada com melhor estimativa da produtividade de grãos de aveia.