Modelagem do progresso de doenças foliares e produtividade em cultivares de aveia à redução no uso de fungicida
dc.contributor.author | Alessi, Odenis | |
dc.date.accessioned | 2023-12-20T17:11:46Z | |
dc.date.available | 2022-10-05 | |
dc.date.available | 2023-12-20T17:11:46Z | |
dc.date.issued | 2023-12-20 | |
dc.description | 140 f. | |
dc.description.abstract | A aveia branca (Avena sativa L.) é um cereal de grande importância agrícola. Durante o seu cultivo está sujeita ao ataque de doenças foliares, com destaque à ferrugem da folha e à helmintosporiose. A forma mais eficaz no controle destas doenças ocorre com a utilização de fungicidas. Entretanto, a concentração de aplicação do fungicida ocorre em estágios como a floração e enchimento de grãos, possibilitando à permanência de resíduos dos agrotóxicos nos grãos. Além disto, o uso indiscriminado do agente químico pode trazer graves prejuízos ao meio ambiente. No Brasil há uma grande quantidade de cultivares de aveia recomendadas para cultivo e a utilização de cultivares com maior resistência às doenças foliares e com maior eficiência em condições adversas de cultivo pode proporcionar a redução do uso de agrotóxicos. Desta forma, a modelagem matemática e computacional pode auxiliar na identificação de cultivares com maior resistência às doenças foliares e pode permitir a simulação do progresso destas doenças e da produtividade de grãos, auxiliando na redução do uso de fungicida, promovendo maior segurança alimentar. O objetivo do estudo é empregar a modelagem matemática e computacional na identificação de cultivares de aveia com maior resistência às doenças foliares e realizar a simulação do progresso das doenças foliares e produtividade de grãos de aveia, na identificação do manejo do fungicida que promova maior segurança alimentar. O experimento foi realizado nos anos de 2015 a 2020 no IRDeR, pertencente à UNIJUÍ. O delineamento experimental foi o de blocos casualizados, seguindo um esquema fatorial 22 x 5, para as 22 cultivares de aveia branca recomentada para o cultivo no Brasil e 5 condições de aplicações de fungicida, com três repetições. As condições de aplicação do fungicida foram: sem aplicação de fungicida; uma aplicação aos 60 dias após a emergência (DAE); duas aplicações (uma aos 60 e outra aos 75 DAE); três aplicações (uma aos 60, outra aos 75 e outra aos 90 DAE) e; quatro aplicações (uma aos 60, outra aos 75, outra aos 90 e outra aos 105 DAE). Na condição sem uso de fungicida as cultivares Corona, Brisasul, Afrodite, Farroupilha e Gaudéria apresentam as menores taxas de evolução de necrose foliar, com destaque à cultivar Farroupilha que possui características de adaptabilidade ampla e de estabilidade sobre a área foliar necrosada. A cultivar Altiva apresenta maior expressão da produtividade de grãos na ausência de fungicida e menor dependência ao uso do agrotóxico. A produtividade de grãos mostra relação negativa com a área foliar necrosada e positiva com a massa do hectolitro e a produtividade industrial. Destaca-se que na ausência e nas condições de presença de fungicida se evidenciam relações de causa e efeito semelhantes entre as variáveis. A área foliar necrosada apresenta grande número de correlações significativas negativas com variáveis ligadas a produtividade e qualidade de grãos, principalmente a massa de mil grãos e do hectolitro e produtividade de grãos e de indústria. A condição de duas aplicações de fungicida, uma aos 60 DAE e outra aos 75 DAE, reduz a expressão da necrose foliar e permite a obtenção de produtividade de grãos satisfatória, com elevado intervalo entre a colheita e a última aplicação do agrotóxico. O modelo de simulação da área foliar necrosada via redes neurais artificiais é mais eficiente no processo de simulação em relação ao modelo de regressão linear múltipla A técnica de otimização por algoritmo genético identifica que a avaliação da área foliar necrosada aos 87 dias após a emergência permite a melhor análise da área foliar necrosada com melhor estimativa da produtividade de grãos de aveia. Palavras-chave: Avena sativa L., matemática aplicada, inteligência artificial, redução de agrotóxicos, sustentabilidade. | |
dc.identifier.uri | https://bibliodigital.unijui.edu.br/handle/123456789/7529 | |
dc.language.iso | pt_BR | |
dc.relation.ispartofseries | Tese | |
dc.subject | MATEMÁTICA::Matemática Aplicada | |
dc.title | Modelagem do progresso de doenças foliares e produtividade em cultivares de aveia à redução no uso de fungicida | |
dc.type | Tese | |
mtd2-br.advisor.instituation | Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Unijuí | |
mtd2-br.advisor.name | Silva, José Antonio Gonzalez da |